
Abstract Quantification of regional terrestrial carbon dioxide (CO2) fluxes is critical to our 
understanding of the carbon cycle. We evaluate inverse estimates of net ecosystem exchange (NEE) of 
CO2 fluxes in temperate North America, and their sensitivity to the observational data used to drive the 
inversions. Specifically, we consider the state-of-the-science CarbonTracker global inversion system, 
which assimilates (a) in situ measurements (IS), (b) the Orbiting Carbon Observatory-2 (OCO-2) v9 
column CO2 (XCO2) retrievals over land (LNLG), (c) OCO-2 v9 XCO2 retrievals ocean-glint (OG), and (d) 
a combination of all these observational constraints (LNLGOGIS). We use independent CO2 observations 
from the Atmospheric Carbon and Transport (ACT)—America aircraft mission to evaluate the inversions. 
We diagnose errors in the flux estimates using the differences between modeled and observed biogenic 
CO2 mole fractions, influence functions from a Lagrangian transport model, Bayesian inference, and 
root-mean-square error (RMSE) and bias metrics. The IS fluxes have the smallest RMSE among the 
four products, followed by LNLG. Both IS and LNLG outperform the OG and LNLGOGIS inversions 
with regard to RMSE. Regional errors do not differ markedly across the four sets of posterior fluxes. The 
CarbonTracker inversions appear to overestimate the seasonal cycle of NEE in the Midwest and Western 
Canada, and overestimate dormant season NEE across the Central and Eastern US. The CarbonTracker 
inversions may overestimate annual NEE in the Central and Eastern US. The success of the LNLG 
inversion with respect to independent observations bodes well for satellite-based inversions in regions 
with more limited in situ observing networks.

Plain Language Summary Biological CO2 fluxes, an important component of the earth's 
climate system, remain uncertain, especially at continental and sub-continental spatial domains. 
Different global CO2 observing systems imply significantly different net biological fluxes of CO2. We use 
independent CO2 measurements from an extensive multi-seasonal aircraft campaign to evaluate biological 
CO2 flux estimates derived from four different observational systems entered into a common data analysis 
system. The observations include both ground and satellite-based measurements. We found that one of 
the the satellite-based CO2 estimates performs nearly as well as the estimates based on ground-based 
measurements. This suggests that the satellite data may serve to estimate regional variations in biological 
CO2 fluxes in portions of the globe with more limited ground-based observing networks. The inversions 
all appear to overestimate dormant season release of biological CO2 to the atmosphere, thus may 
underestimate the net uptake of CO2 by ecosystems in the Central and Eastern United States.
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Key Points:
•  In situ measurements and the 

land nadir/land glint inversions 
are the most reliable products of 
CarbonTracker in temperate North 
America, superior to ocean-glint or 
LNLGOGIS inversions

•  Errors in these CarbonTracker 
regional flux estimates are 
not strongly dependent on the 
observational data sources

•  CarbonTracker overestimates 
seasonal net ecosystem exchange 
(NEE) for the Eastern and Central 
US, thus the annual NEE may 
underestimate continental uptake 
of CO2
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1. Introduction
Accurate quantification of carbon dioxide (CO2) fluxes from different sources is an important input to the 
design of climate policies (e.g., Ciais et al., 2014; Keller et al., 2008; Rogelj et al., 2018). CO2 flux related to 
terrestrial net ecosystem exchange (NEE) is one of the major components. It is challenging to quantify CO2 
NEE fluxes due to complex biosphere processes, together with the biosphere-atmosphere interactions (e.g., 
Tian et al., 2016). Both bottom-up and top-down approaches (e.g., Hayes et al., 2012; Hu et al., 2019; Liu 
et al., 2017; Pan et al., 2011; Thompson et al., 2020) have been used to characterize and quantify CO2 NEE 
fluxes using data from a wide range of observation platforms.

The top-down approach is an optimization framework to improve a priori flux estimates, that are informed, 
for example, by ecosystem carbon-stock inventories or carbon flux models (e.g., Haynes et al., 2019). At-
mospheric CO2 measurements, on which the top-down method relies, can contribute powerful constraints 
to the bottom-up methods (e.g., Ogle et  al.,  2015). Different atmospheric CO2 measurement platforms 
such as boundary-layer CO2 mole fractions from ground-based networks (e.g., Andrews et al., 2014; Miles 
et al., 2012) and column-averaged CO2 mole fractions (XCO2) from satellites (e.g., Liu et al., 2020), aim to 
complement each other. Measurement biases, atmospheric transport errors, or representation errors, how-
ever, may cause difficulty in assimilating these measurements within the optimization process.

Evaluating current top-down CO2 flux estimates from the different platforms with independent observa-
tions is a promising avenue to improve them. Chevallier et al. (2019) compares six global CO2 atmospheric 
inversions from the combinations of three measurements platforms (i.e., Orbiting Carbon Observatory-2 
- OCO-2 or Greenhouse Gas Observing Satellite - GOSAT column retrievals, and boundary-layer in situ 
measurements) using a large number of independent aircraft measurements in the free troposphere. They 
provide a cross-comparison among different inversion estimates as well as mole fraction-based comparisons 
between inversions and the aircraft measurements. They found the overall performance of inversions based 
on in situ data and based on OCO-2 XCO2 observations to be similar, however, they show that the posterior 
fluxes diverge for the northern and tropical parts of the continents. Seasonal, regional evaluation of the 
posterior fluxes is needed. The global inversions are temporally and spatially resolved products, and many 
aircraft field campaigns take place at a regional scale. This opens up the opportunity for further in-depth 
regional evaluations.

The Atmospheric Carbon and Transport–America (ACT-America) mission, conducted flights east of the 
Rocky Mountains in the United States (US) during Summer 2016, Winter 2017, Fall 2017, Spring 2018, and 
Summer 2019 (Davis et al., 2018; Davis et al., 2021). The multi-seasonal aircraft CO2 sampling of ACT-Amer-
ica provides a unique opportunity for regional evaluation of CO2 flux estimates. Extensive atmospheric CO2 
measurements from the atmospheric boundary layer (ABL) to the upper free troposphere during four sea-
sons from ACT-America enable researchers to rigorously assess and potentially distinguish the biases and 
accuracy of different inversion estimates for temperate North America.

OCO-2 gathers XCO2 measurements globally using nadir and glint observations over land, and glint ob-
servations over the oceans (Eldering, O'Dell, et  al.,  2017; Eldering, Wennberg, et  al.,  2017). The OCO-2 
retrievals are continually being improved (e.g., Miller & Michalak, 2020; O'Dell et al., 2018). Independent 
observation campaigns can test the ability of the OCO-2 v9-based inversions to estimate regional-scale flux-
es with accuracy and precision. Temperate North America has one of the densest in situ-based greenhouse 
gas monitoring networks in the world. An evaluation of the OCO-2 v9 based flux estimates, along with the 
evaluation of in situ-based CO2 flux estimates together can be used to assess the complementary role of the 
two platforms. Additionally, a multi-platform strategy that combines in situ- and satellite-based platforms 
to constrain CO2 NEE is promising but requires independent evaluation.

In this study, we implement a method to evaluate the in situ-based, OCO-2 v9-based, and two-system-com-
bined inversions of CO2 NEE in temperate North America using airborne observations from the ACT-Amer-
ica mission. Specifically, We evaluate the state-of-the-science CarbonTracker global inversion system's in-
verse NEE estimate for North America from four different set of observations, created as part of OCO-2 
v9 model intercomparison project (https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/). We evaluate the 
capability of the four different observing systems to quantify CO2 NEE in temperate North America. The 
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details of the evaluation framework are described in Section 2. Results and discussion are presented in Sec-
tion 3. We conclude in Section 4.

2. Materials and Methods
2.1. CarbonTracker CO2 NEE Flux Products

We evaluate four CO2 flux products in the study, which are from CarbonTracker global inversion system 
(Jacobson et al., 2020). Following the protocol of OCO-2 v9 MIP, CarbonTracker performed a series of global 
CO2 flux experiments for 2015–2019 driven by a variety of observation platforms, including CO2 measure-
ments from a) in situ data (IS) compiled in the GLOBALVIEW+ 5.0 (Cooperative Global Atmospheric Data 
Integration Project, 2019) and NRT v5.1 (CarbonTracker Team, 2019) ObsPack products; b) the land nadir/
land glint (LNLG) retrievals of column-integrated CO2 from OCO-2 v9; c) OCO-2 ocean glint (OG) v9 re-
trievals; and d) a combination of the in-situ and satellite data (LNLGOGIS). These global flux products are 
mapped onto 1-degree grid cells at 3-hourly intervals.

CarbonTracker of the OCO-2 v9 MIP use the Open-Data Inventory for Anthropogenic Carbon dioxide (ODI-
AC) 2018 fossil fuel emission inventory and the Global Fire Emissions Database (GFED) 4.1  s wildfire 
inventory. The prior biological CO2 fluxes are from the GFED 4.1 s land net ecosystem exchange inventory 
post-processed by CarbonTracker 2019. The optimization process in the CarbonTracker system is based on 
the square root ensemble Kalman filter of (Whitaker & Hamill, 2002). Details of the CarbonTracker inver-
sion system are described in (Peters et al., 2007; Jacobson et al., 2020) (https://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/CT2019B_doc.php).

2.2. ACT-America Aircraft Campaign

We use CO2 measurements from the Summer 2016, Winter 2017, Fall 2017, and Spring 2018 ACT-America 
campaigns. These are the times for which CO2 flux products are available from CarbonTracker, as part of the 
OCO-2 v9 MIP. The maps illustrate the seasonal average of CO2 NEE fluxes and the spatial coverage of in-si-
tu and OCO-2 LNLG/OG data during the ACT-America campaign periods are shown in Figure S1 and S2. 
Each ACT-America campaign flew over the same three sub-regions of the United States (US): the Mid-At-
lantic, Midwest, and Gulf Coast. For most flight days, two aircraft (a NASA Langley B200 and a NASA 
Wallops C130) flew together measuring atmospheric CO2 mole fractions and other atmospheric variables in 
patterns designed to sample the variability in atmospheric GHGs within mid-latitude weather systems and 
the associated regional surface fluxes. All flights were conducted during midday hours (15-0 UCT) in order 
to sample well mixed ABL conditions. The detailed instrument, deployment and data set of ACT-America 
are described in (Davis et al., 2021; Wei et al., 2021). The calibration of the CO2 measurements are described 
by (Baier et al., 2020). About 35% of the flight time was within the ABL, the portion of the atmosphere most 
sensitive to regional GHG surface fluxes. In this study, we use the ABL measurements excluding the take-
off and landing portions, and aggregate these CO2 measurements across 30-s intervals (Figure 1, Table 1) to 
construct the receptors in the Lagrangian particle dispersion modeling that described in Section 2.3.

2.3. Influence Functions for ACT Flight Data

Upwind fluxes influence the aircraft samples. We explicitly quantify the source-receptor relationship (i.e., 
influence function) using a Lagrangian particle dispersion model (FLEXPART-WRF) (Brioude et al., 2013) 
in a backward mode. The simulations of FLEXPART-WRF are driven by the 27-km WRF-Chem simulated 
meteorology from the base line simulation described in Feng, Lauvaux, Davis, et al. (2019); Feng, Lauvaux, 
Keller et al. (2019) which were nudged to the 25-km ECMWF-ERA5 reanalysis data (Hersbach et al., 2020). 
In the study, we aggregated the set of influence functions to be the 1 × 1 degree resolution in terms of the 
flux evaluation.

We computed a suite of influence functions across 98 flight days, at the same spatial and temporal resolu-
tion of the meteorological driver (27 km and hourly) covering the entire domain (Figure 2). Each receptor 
of the influence function is the 30-s interval along flight tracks, characterized by a box with boundaries 
between the maximum and minimum latitude/longitude as well as between the maximum and minimum 
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heights during the 30-s interval. Each receptor box released 5,000 particles and simulated their transport 
and dispersion backward for 10 days (Cui et al., 2015, 2017, 2019). Some validations of the suite of influence 
functions were conducted. Based on the same flux inputs, boundary conditions, and meteorological fields, 
we compared the FLEXPART-WRF simulated CO2 mole fractions with the WRF-Chem forward simulations 
along flight tracks to evaluate the ability of the current influence function setup to reproduce corresponding 
WRF-Chem simulations in the domain. We found that they agreed well. The suite of influence functions 
plays a key role in our evaluation described in Section 2.4.2. Evaluation of the WRF transport fields has been 
performed in other ACT studies (e.g., Feng, Lauvaux, Davis, et al., 2019). Additional evaluation using the 
ACT airborne data is underway.

2.4. Biogenic CO2 Component

2.4.1. Background Determination

To evaluate the surface fluxes in our domain, we subtract the CO2 background values from the ACT CO2 
measurements to obtain an estimate of the CO2 mole fraction enhancements and depletions caused by sur-
face fluxes in the domain. The CO2 boundary conditions in the WRF-Chem configuration are from Carbon-
Tracker (Feng, Lauvaux, Davis, et al., 2019). We interpolate the boundary values along the flight tracks to 

determine the background-value elements in ybkg. For the ACT Summer 
2016 campaign, we used the 4-D simulations of atmospheric CO2 mole 
fractions from the CarbonTracker 2017 product, while for the rest of the 
campaigns we used values from the CarbonTracker 2019-Near Real Time 
version 2 product. Upper free tropospheric mole fractions can provide an-
other estimate of continental background conditions (Baier et al., 2020). 
We compare the simulated background mole fractions along ACT-Amer-
ica flight tracks above 4,000 mean sea level with the corresponding 
ACT-America measurements and find good agreement (Figure S3). We 
do not explicitly compute uncertainty in the background in this study, 
but this comparison, and the work of Feng, Lauvaux, Davis, et al., 2019 
suggests that the uncertainty is less than about 1 ppm.

CUI ET AL.

10.1029/2020JD034406

4 of 11

Figure 1. Boundary layer CO2 mole fractions (unit: ppmv) sampled during four Atmospheric Carbon and Transport-
America campaigns.

Flight 
months

Flight 
days

Flight 
(hours)

Atmospheric boundary 
layer data fraction (%)

Summer 2016 Jul–Aug 25 248 34

Winter 2017 Feb–Mar 25 218 35

Fall 2017 Oct–Nov 22 245 33

Spring 2018 Apr–May 26 261 32

Table 1 
Aircraft Data From Four Atmospheric Carbon and Transport-America 
Campaigns Used in the Study
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2.4.2. ACT Referenced Biogenic CO2

The atmospheric CO2 mole fraction continental enhancements and depletions include the influence of 
different fluxes: biogenic, fossil fuel, fire, and oceanic. To focus on the land biogenic CO2 component, we re-
move the influence of the fossil fuel, fire, and oceanic sources on total CO2(y) by subtracting the component 
mole fraction enhancements simulated using the influence functions and flux estimates:

     ,ACTbio bkg ff fire ocny y y HE HE HE (1)

 where H represents the influence functions (see details in 2.3), which are used with the fluxes to produce 
the atmospheric CO2 mole fractions along flight tracks. Eff, Efire, Eocn represent CO2 fluxes from the fossil 
fuel, fire, and oceanic sources in the domain. Eff, Efire, Eocn are obtained from the CarbonTracker system as 
part of OCO2 v9 MIP. As described in Section 2.1, Eff is obtained from the ODIAC 2018 fossil fuel emission 
inventory, Efire is from the GFED4.1 s wildfire inventory respectively. Eocn is from the posterior ocean fluxes 
of the IS, LNLG, OG, or LNLGOGIS experiments, respectively. ACT-America campaigns were designed to 
fly over multiple productive ecoregions in Central and Eastern US and usually avoided urban areas, and 
wildfires in this region are not abundant. We modeled CO2 enhancements/depletions from the four source 
components to the ACT-America boundary layer data space. The fire and ocean sources have trivial contri-
butions to ACT-America data, compared with the biological and fossil fuel sources. Fossil fuels have modest 
influence on ACT-America data. Oda et al. (2018) estimated the annual ,uncertainty estimate of fossil fuel 
emission from ODIAC 2016 over North American Temperate to be 3.7%. Moreover, we convoluted two fossil 
fuel emission inventories to the ACT-America boundary layer data space and found the relative errors of 
mean values to be 2%–11% (Figure S4-S5). The uncertainties from the fossil fuel, fire and ocean fluxes used 
in Equation 1 are much smaller compared to the uncertainty of NEE of CO2.

Meanwhile, the modeled biogenic CO2 enhancements/depletions along the ACT flight tracks are also calcu-
lated as well from the four CO2 NEE flux products (Ebio, see Section 2.1) respectively:

modelbio bioy HE (2)
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Figure 2. The spatial maps of accumulated 27 × 27 km 10-day influence functions are shown for each campaign, 
which are colored by the different percentile levels. Influence functions (unit: ppm/(mol m−2 s−1)) are used to 
quantify the relationship between the upwind sources and downwind receptors along the flights.
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2.5. Evaluation Framework and Experimental Design

To distinguish and rank the different flux products, we calculate the 
root-mean-square error (RMSE) between ymodelbio and yACTbio. The value 
of ymodelbio is calculated using the influence functions and the flux prod-
ucts at the 3-hourly 1 × 1 degree spatial and temporal resolutions. The 
flux product associated with the smaller RMSE value indicates the better 
performance, and vice versa. The RMSE analysis is applied for all data 
during each campaign as well as the entire four campaign datasets.

The mole fraction-based analysis above is the net result of upwind bio-
genic fluxes. It is hence difficult to identify the sub-regional and ecosys-
tem-specific sources of these divergences between the aircraft observa-
tions and simulations from the flux products without further diagnosis 
(Rayner, 2020). Therefore, in the study, we also conduct the flux-based 
evaluation to further diagnose the errors of flux products at the sub-re-
gional scale. We use the following equations,

   1
0 ( ) ( )T T

ACTbio modelbiox x BH HBH R y y (3)

  0 ,x x (4)

and

   1( ) ( ),T T
modelbio ACTbioBH HBH R y y (5)

 where H (dimension: m × n, m: receptors, n: states (spatial clusters associated with the time intervals) is the 
influence function, R (dimension: m × m) and B (dimension: n × n) represent the covariance of the mod-
el-data mismatch and the prior flux errors, respectively. x denotes the optimized flux value (the mode value 
of the posterior distribution, dimension: n x 1) using ACT-America data, and x0 denotes the flux products 
that are evaluated in the study, that is the prior information.

We apply the Bayesian solution to optimize the flux products using the ACT-America data (Equation 3), and 
use the differences between the flux products and their optimizations by ACT-America (Equations 4 and 5) 
to evaluate the flux products.

ɛ (dimension: n × 1) is a spatially and temporally resolved quantity and it represents the errors in the flux 
product compared with the ACT-America referenced fluxes. ɛ is in units of μmol/m/s and it has positive 
and negative signs. A lower magnitude of ɛ indicates the flux product is closer to the ACT referenced value. 
Positive values in ɛ identify grid clusters where flux products overestimate the NEE of CO2, and vice versa.

R is assumed to be the variance of residuals between ymodelbio and yACTbio. We give a conservative assumption 
for R. B is given to be 100% relative uncertainty of the flux product (x0) initially, and we then apply a regular-
ization parameter to B to tune the balance between the contributions of the model-data mismatch and the 
constraints of the prior estimation based on Equation 3 (Cui et al., 2015, 2017). Given the values of R and 
tuned B, we explicitly solve ɛ in Equation 5.

For this study, we focus on the seasonal-level evaluations, thereby we combine all data from each campaign 
(i.e., each season) as one case, and derive the corresponding spatially and temporally resolved values of ɛ. 
We focus on the grid cells associated with the large values of influence functions for each campaign (Fig-
ure 2), and aggregate these grid cells in each sub-domain (i.e., R1, R2, and R3 in Figure 3) according to the 
different ecoregions classified in the CarbonTracker system and obtain total 36, 36, 37, and 33 grid clusters 
for the four cases, respectively (more details in SI and Figure S6). R is treated as the diagonal matrix in the 
study. We aggregated the time intervals from the native 3-hourly intervals to the daytime (14–01 UTC) and 
nighttime (02–13 UTC) scales of each day and used an e-folding temporal correlation scale (20 days) to 
the same time period of day in the prior flux errors. We then calculate the weighted average of ɛ (without 
or within its sign) during each campaign, based on the temporal information constrained by HTH for each 
domain (i.e., R1, R2, and R3), to identify the seasonal error levels for the flux products.
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Figure 3. Three sub-domains are determined in the study: R1 denotes 
the Midwestern US and Western Canada areas; R2 denotes the Eastern 
US area; and R3 denotes the Southern US area. We only focus on the grid 
cells associated with the high values of the influence functions in the three 
domains. Details are described in Support Information. The background is 
the map of CO2 NEE fluxes from the IS product, which are averaged values 
over July and August of 2016.
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3. Results and Discussion
As described in Section 2.5, we use both mole fraction-based and flux-based metrics to evaluate the four 
sets of NEE inversion products (e.g., IS, LNLG, OG, and LNLGOGIS). First, the mole fraction-based RMSE 
analysis are shown in Figure 4. We found that the IS flux product has the best performance among the four 
products during the summer, fall, and spring, and has the second-best performance during the winter time. 
The performance of the LNLG flux product is second in most seasons and best in the winter. The OG flux 
product has the worst performance across the winter, fall, and spring and it is consistent with previous 
studies (e.g., Crowell et al., 2019; O'Dell et al., 2018). The RMSE values integrated over four campaigns show 
that IS has the best aggregate performance at the annual level, followed by LNLG, OG, and LNLGOGIS. The 
multi-platform product (LNLGOGIS) performs similarly to the OG flux inversion.

We calculated the averaged absolute values of ɛ by campaign in Figure 5, based on Equations 3–5, to identify 
the spatial distribution of errors in the flux products. In general, the four flux products show similar spatial 
patterns during all four campaigns. The similar spatial patterns indicate that the spatial distributions of 
errors in the NEE of CO2 estimates are not strongly dependent on the observational system used. All flux 
inversions show the largest errors in the Central and Eastern US during the summer time. There are larger 
errors in the Southern and Eastern US than other areas during the spring. The inversions in winter time 
show the smallest errors. Although the overall spatial patterns of errors are similar, some differences among 
the flux products can still be observed at the sub-regional scale. For example, LNLG and LNLGOGIS have 
similar overall performance with IS in Eastern and Southern US, but much worse than IS in Midwest and 
Western Canada.

We further calculate the seasonally averaged ɛ including the signs for the three sub-domains (Figure 6, and 
the corresponding spatial maps are shown in Figure S7) to identify the seasonal errors for these regions in 
the flux products. Again, the spatial patterns of the seasonal errors in these CarbonTracker regional flux 
estimates are not strongly dependent on the observational data sources. During the summertime, we found 
that all inversions overestimate NEE of CO2 in the Eastern US (so the magnitude of net photosynthesis is 
underestimated), but significantly underestimate the flux (net photosynthesis is too large in magnitude) 
in the Midwest US and western Canada area from the LNLG and LNLGOGIS products. The LNLGOGIS 
product also underestimates NEE fluxes in the Southern US. The IS fluxes show the overall minimum errors 
across the three areas. The LNLG fluxes show similar errors with the IS fluxes in the Eastern and Southern 
US, but larger errors than IS in the Midwest US and Western Canada area in summer. Dormant season 
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Figure 4. The Root-Mean-Square-Error between ymodelbio and yACTbio from the four flux products are shown, for each 
Atmospheric Carbon and Transport campaign (Summer 2016, Winter 2017, Fall 2017, and Spring 2018), and combined 
four campaigns (overall).
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NEE is generally overestimated in the inversions. The LNLG fluxes show a larger overestimate of NEE in 
Midwest and Western Canada during the wintertime compared with IS, but show a smaller overestimate 
of NEE in the Eastern and Southern US areas. During the fall, all inversions overestimate NEE of CO2 in 
the Eastern US and underestimate NEE of CO2 in the Southern US. The IS fluxes show fewer errors than 
the LNLG fluxes in the Midwest US and Western Canada and Southern US, but LNLG also shows a similar 
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Figure 5. The spatial maps of seasonal ɛ absolute values without the positive and negative signs are shown, corresponding to the four flux products during 
each Atmospheric Carbon and Transport-America campaign, respectively. The three sub-regions are shown with the light pink lines.

Figure 6. The integrated regional errors (ɛ values) refer to the daily flux estimation from the four flux products shown 
for each Atmospheric Carbon and Transport-America campaign, respectively.
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overestimate of NEE in the Eastern US during the fall. The OG fluxes show the largest errors across the 
three domains. All inversions overestimate NEE of CO2 in the Southern US during spring. The LNLG flux 
biases are similar in pattern and magnitude to the IS fluxes for the three domains.

Extrapolating these results across seasons suggests that the inversions generally amplified the seasonal cy-
cle of NEE in Midwest and Western Canada by underestimating summer NEE or overestimating dormant 
season NEE, especially for the LNLG products. When we consider ɛ results across the four campaigns we 
found that the annual NEE of CO2 fluxes have the positive errors in in Midwest and Western Canada and 
Eastern US from the IS and LNLG fluxes, but the LNLG fluxes show negative errors in the Southern US. The 
IS fluxes have the best seasonal performance and LNLG has the best annual performance across the three 
areas (i.e., the Central and Eastern temperate North America).

The seasonally averaged ɛ by daytime and nighttime for each case are calculated as well (Figure S8 and S9), 
respectively. We note that these day-night analysis might be influenced by biases in atmospheric transport, 
including simulation of the nocturnal atmospheric boundary layer. The spatial patterns of the errors during 
the daytime and nighttime largely match those found for the daily NEE error estimates in Figure 6. During 
the summertime, opposing patterns of ɛ (negative values during the daytime, and positive values during the 
nighttime) in Midwest and Western Canada suggest that both nighttime respiration and net daytime pho-
tosynthesis are overestimated in the area. Both positive biases during daytime and nighttime in the Eastern 
US suggest overestimated biogenic respiration in this region. During the wintertime, positive biases seen in 
day and night from IS and LNLG in Midwest and Western Canada indicate that respiration is overestimated 
in the region. The magnitudes of errors in day and night from all flux products are small in the Eastern US. 
Opposing patterns of ɛ (negative values during the daytime, and positive values during the nighttime) are 
seen in the Southern US. Consequently, the overall daily errors in these areas are small in Figure 6. In the 
fall, opposing patterns of ɛ (negative values during the daytime, and positive values during the nighttime) 
are seen again in the Southern US. In the spring, opposing patterns of ɛ (negative values during the daytime, 
and positive values during the nighttime) in the three domains suggest that both nighttime respiration and 
net daytime photosynthesis are overestimated in these areas.

4. Conclusions
We implement a framework to evaluate the NEE of CO2 flux estimations across the Central and Eastern 
United States and some of Western Canada. We use this approach on the posterior fluxes from the Carbon-
Tracker global flux inversion system, which, for the OCO2 v9 MIP, was run with four different atmospheric 
CO2 data sources.

This study suggests that, in terms of regional variability in NEE of CO2, the IS inversion and the inversion 
using the LNLG observations from OCO-2 v9 are likely to be the most reliable products of the CarbonTrack-
er system, superior to inversions based on the OCO-2 v9 OG or all data platforms (LNLGOGIS) data sets. 
We found, using a error diagnosis metric, that IS generally outperforms the inversions based on OCO-2 
v9 observations, but the differences between the IS inversion and the LNLG inversion are relatively small. 
The OG and LNLGOGIS inversions are clearly inferior to the IS and LNLG inversions with respect to this 
error metric analysis, and warrant further investigations. This strong performance of the LNLG inversion as 
compared to the IS inversion is encouraging when considering inverse flux estimates in regions of the world 
where the in situ observing network is sparse.

The spatially resolved errors for the regional fluxes in CarbonTracker are not strongly dependent on the ob-
servational data source. Our results suggest that CarbonTracker overestimates seasonal NEE for the Central 
and Eastern US, and that, as a result, the annual NEE from CarbonTracker may underestimate continental 
uptake of CO2 (annual mean NEE too positive). Summer NEE is positively biased in the Eastern US and 
negatively biased in Midwest and Western Canada, yielding relatively little total seasonal bias across the 
continent in summer. In the dormant seasons, the CarbonTracker inversions appear generally to overesti-
mate NEE. It is possible that the FLEXPART-WRF transport model used in our evaluation system may be 
biased. The differences between the two systems (FLEXPAT-WRF and TM5-ERA-interim) would also cause 
the uncertainty to the flux evaluation. Conclusive assessment of the magnitude of the errors in seasonal 
NEE from CarbonTracker will depend on a more rigorous assessment of the transport models, which is 
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currently being conducted. Nevertheless, we demonstrate that this continental-scale, multi-season airborne 
data set provides sufficient data to distinguish among inverse flux estimates and posterior identify flux bias-
es, resulting in better understanding of the true NEE from North America.

We propose to extend this evaluation framework to other flux products from both top-down or bottom-up 
methods, such as other members of the OCO-2 v9 MIP and any available continental-scale biogenic CO2 
flux estimates. We hypothesize that these studies will yield insights that are applicable across the globe, 
especially in midlatitude ecosystems.
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